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ABSTRACT

As the climate change is likely to be adversely affecting the yield of paddy production, thence 
it has brought a limelight of the probable challenges on human particularly regional food 
security issues. This paper aims to fit multivariate time series of paddy production variables 
using copula functions and predicts the next year event based on the data of five countries in 
southeast Asia. In particular, the most appropriate marginal distribution for each univariate 
time series was first identified using maximum likelihood parameter estimation method. 
Next, we performed multivariate copula fitting using two types of copula families, namely, 
elliptical copula family and Archimedean copula family. Elliptical copula family studied 
are normal and t copula, while Archimedean copula family considered are Joe, Clayton and 
Gumbel copulas. The performance of marginal distribution and copula fitting was examined 
using Akaike information criterion (AIC) values. Finally, we used the best fitted copula 

model to forecast the succeeding event. In 
order to assess the performance of copula 
function, we computed the forecast means 
and estimation errors of copula function with 
a generalized autoregressive conditional 
heteroskedasticity model as reference group. 
Based on the smallest AIC, the majority 
of the data favoured the Gumbel copula, 
which belongs to Archimedean copula 
family as well as extreme value copula 
family.  Likewise, applying the historical 
data to forecast the future trends may assist 
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all relevant stakeholders, for instance government, NGO agencies, and professional 
practitioners in making informed decisions without compromising the environmental as 
well as economical sustainability in the region.

Keywords: Archimedean copula family, dependence structure, elliptical copula family, paddy production 

INTRODUCTION

Paddy is an essential crop and a staple food for more than half of the universal population. 
Particularly nearly 90% of the world’s paddy production likewise consumption takes 
place in Asia (Bandumula, 2017). Abreast of the heedfulness about global climate change 
whereby scrutinising the Intergovernmental Panel on Climate Change (IPCC) most recently 
released report has articulated that the agricultural products’ yields are highly correlated 
with atmospheric indicators, wherein the extreme whether such as droughts and flooding 
would eventuate grievous repercussion on the livelihood of small scale farmers particularly 
in Southeast Asia region (IPCC, 2019). An accelerating temperature due to the shifting of 
climate pattern could resultant in the decline of crop yields which may eventually shed the 
limelight on the shortage of global food supply. Subsequently, it may trigger food security 
issue wherein on the grounds of the estimated world population which is envisioned to be 
9.7 billion in the next three decades despite the projection indicating a stagnant growth 
ever since 1950 (United Nations, 2019). 

The variability of climatic factors such as total rainfall and maximum temperature has 
direct impacts on paddy productivity, as the extreme weather such as flood and drought 
can retard normal growth and grain yield (Nyang’au et al., 2014). For instance, El Nino 
affects the components of grain production ranging from cropping area (area planted) as 
well as cropping intensity (volume of production per year) in Southern Asian regions. 
Furthermore, the importance of soil fertility on paddy production has been well validated 
in previous literature whereby the farming practices in maintaining adequate input such 
as fertilizer is important to ensure good quality of crop (Putri et al., 2019).

In ASEAN countries, there is approximately 46.171 million (M) ha of paddy planted 
area in 2019 (ASEAN Food Security Information System, 2019). The largest area is found 
in Indonesia (10.290 M ha), followed by Thailand (11.356 M ha), Vietnam (7.478 M ha), 
Myanmar (7.228 M ha) and Malaysia (0.700 M ha). In general, the cultivation of paddy in 
Southeast Asian consists of three main systems which are (i) upland or so called as aerobic 
rice that is planted in dry fields; (ii) lowland rice which farmed in irrigated field for the 
most part of the crop growing period; and (iii) floating rice that is grown in water depths 
between 0.5-4.5 m (Muhammad, & Abdullah, 2013). Although approximately 55 percent 
of the paddy production in Southeast Asia is cultivated using floating rice system, yet the 
rest (i.e. upland and lowland) is highly dependent on the timely and consistent rainfall 
particularly during the reproductive growth stage (USDA, 2015). In term of the fertilizer 
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usage, Vietnam recorded the highest increment in fertilizer consumption (15.1%), followed 
by Myanmar (12.2%), Thailand (6.2%), Indonesia (4.6%), and Malaysia (3.7%) in the 
interval period of 1990-1999 (Mutert & Fairhurst, 2002).

Agriculture is a crucial economic sector that contributed approximately $3 trillion 
real global gross domestic production (GDP) in 2017 (Food and Agriculture Organisation, 
2019). However, Hsiang et al. (2017) had revealed the simulation findings about the 
likelihood of global GDP to shrink in between one to three percent every year if the global 
warming issue persisted beyond the 21st century. A recent publication of OECD divulges 
that the trading volume amongst ASEAN countries merely comprises 2% of their regional 
yielding despite the fact that greater extent of integration between the territorial rice market 
can improve the malnourishment plight by 1% and even up to 6% when there are constraints 
in production factors (OECD, 2018). 

While contemplating the level of production of paddy in 2018, the top four ranking 
ASEAN countries comprise Indonesia (83,037,000 tons), Vietnam (44,046,250 tons), 
Thailand (32,190,090 tons), and Myanmar (25,418,140 tons) while Malaysia is merely 
producing 2,718,990 tons (Moore, 2020). Though an observation of a declining trend 
apropos the consumption of table rice in some countries such as Japan and South Korea 
due to the diversification of choice for caloric diets, yet such incident does not betide in 
Malaysia wherein rice ingestion has reached triple times or more in comparison with other 
sources of carbohydrate such as wheat over the past four decades (OECD, 2020; Khazanah 
Research Institute, 2019). Thenceforth, this study has included Malaysia as one of study 
countries on the ground that the adverse weather condition has further reduced the paddy 
production along with the restricted paddy harvested area due peninsular geographical 
landscape. However, based on past research, the paddy harvested area had declined by 
2.7% on year over year (y-o-y) in 2019 as compared to year 2018. This has made Malaysia 
a net importer of rice in spite of improving in paddy yield ensuing of enhancement of seed 
variability (ASEAN Food Security Information System, 2019). 

The extraction statistics from the similar report in year 2019 manifesting that even 
with an upsurge of paddy planted area in countries such as Indonesia (y-o-y increment 
of 6.90%) and Vietnam (y-o-y increment of 0.93%), after all the paddy yield has not 
improved accordingly i.e. Indonesia (y-o-y declined by 1.36%) and Vietnam (y-o-y fallen 
by 0.17%). Nearly 80% of destructed paddy planted plots in ASEAN have been affected 
by adverse climate conditions, for an illustration purpose, a shrinkage of harvested area 
(y-o-y decreased by 0.86%) has slumped Thailand’s paddy production by 2.33%, wherewith 
approximately 187,118 hectares and 364,773 hectares of paddy area have been damaged by 
flood and drought respectively (ASEAN Food Security Information System, 2019). Almost 
all of the paddy cultivation grown in irrigated and rainfed lowland, the aquatic environment 
has been further impelled the importance of having proper nutrient management as 
inefficient utilisation of fertilizer may constraint the grain yield (Singh & Singh, 2017).
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This study intends to furnish the policy maker with intuitiveness about how the 
variability of condition such as rice area, fertilizer usage, total annual average rainfall and 
highest average temperature could affect the paddy production in the key rice producing 
ASEAN nations expressly Indonesia, Vietnam, Thailand, Myanmar and Malaysia with 
the interval between 1961 and 2014. Likewise, applying the historical data to forecast the 
future trends may assist all relevant stakeholders, for instance government, NGO agencies, 
and professional practitioners in making informed decisions without compromising the 
environmental as well as economical sustainability in the region. On the whole, the database 
is retrieved from well-organised, international repositories namely World Bank climate 
data portal and ricepedia.

The objective of this study is to compare and determine the best copula for modelling 
the paddy production variables, which are paddy production (‘000 ton), planted area 
(‘000 hectare), fertilizer used (‘000 ton), total annual average rainfall (mm) and maximum 
average temperature (°C). This analysis was employed for five countries in South East 
Asia, i.e. Malaysia, Thailand, Indonesia, Vietnam and Myanmar. In particular, ten 
univariate distributions were fitted to each variable and the distribution with minimal 
Akaike information criterion (AIC) value would be selected for copula modelling. Two 
copulas from elliptical copula family and three copulas from Archimedean copula family 
were selected for statistical modelling of five variables. The copula which give consistent 
results, namely, the copula that provide smallest AIC values for all five countries, will 
be proposed as guidelines for practitioners in the paddy industry. Paddy planting has 
been the main economic activity of the rural community in ASEAN countries, hence the 
dependence modelling findings in this study aim to provide an efficient tool in order to 
increase the production and income generation for farmers and also to provide sufficient 
grains for the nations.

MATERIALS AND METHODS

Study Area and Data

This research focused on five variables, which were, paddy production, planted area, 
fertilizer usage, total annual average rainfall and maximum average temperature collected 
from Malaysia, Thailand, Indonesia, Vietnam, and Myanmar. The data variables used in 
this study were from year 1961 to 2013, which were collected from ricepedia and World 
Bank climate data portal. In this study, our main interest was paddy production. The other 
four variables were the factors that might affect the production. Paddy planted area is 
positively related with the production. Water and nutrients are important to improve aerobic 
conditions and support the yields. Although the optimum weather for paddy cultivation is 
in tropical countries, which is between 25-35°C, higher temperature will reduce the weight 
and quality of paddy produced. Hence, we would like to use copula functions to analyse 
the effects of these variables on paddy production.
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Marginal Distributions

Copula is a multivariate probability distribution function for two or more variables, and 
their marginal probability distribution are uniformly distributed on the interval [0,1].  Most 
researchers have opted probability distribution functions as the marginal distributions, 
rather than using empirical distribution function. The plausible elucidation is the restrictions 
that may encountered when using empirical distributions i.e. they are relatively inefficient 
as they require actual values of probability to describe the full distribution and they are 
incapable to estimate the distribution of higher amplitudes in the long term (Sørensen, 
2011). The main advantage of copula is that the marginal distribution can come from 
different distribution families and there is no need to assume a specific distribution to model 
the data. Therefore, for this research, we examined the most suitable probability distribution 
function for each variable using continuous probability distributions. Since there was no 
single suitable probability distribution for all countries and variables, we would examine 
the performance of fitting for ten probability distributions, namely, exponential, gamma, 
Weibull, Pareto, Gumbel, Laplace, normal, inverse Gaussian, log normal and logistic 
distributions. The marginal parameters would be estimated using maximum likelihood 
method. The Akaike information criterion (AIC) values would be identified and compared 
to select the most suitable univariate distribution for each variable. A smaller value of AIC 
indicates a better fit.

Copula Theory

Copulas are models for the dependence between two or more random variables when their 
joint distribution function is not explicitly known. The fundamental theorem of copulas 
states that, with F be a d-dimensional cumulative distribution function with marginal 
distributions F1, i = 1,…,d. This exists a unique decomposition F(x1,…,xd) = C(F1(x1),…, 
Fd(xd)) and the copula

𝐶(𝑢1, . . . ,𝑢𝑑) = 𝑃(𝑈1 ≤ 𝑢1, . . . ,𝑈𝑑 ≤ 𝑢𝑑), 𝑈𝑖 ≡ 𝐹𝑖(𝑋𝑖)

on [0,1]d which comprises the information on the underlying dependence structure.

Types of Copulas Used

In this study, we would focus on two families of parametric copulas, which are:

Elliptical Copula Family. Normal and t-distribution are the two most commonly used 
univariate distributions whereby through the incorporation of Sklar’s theorem, the bivariate 
and multivariate elliptical copula family had been constructed (Fouque & Zhou, 2008; Luo 
& Shevchenko, 2012). Elliptical copula family has been substantially employed by keeping 
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the identical elliptical copula function and varying the marginal distributions (Okhrin et al., 
2017). The main advantage of elliptical copula family is that different levels of correlation 
between the marginals can be specified, however, elliptical copula family does not have 
closed form expressions and are restricted to have radial symmetry. 

(a) Normal copula
The normal copula with correlation matrix Ʃ is defined as

𝐶(𝑢1, . . . , 𝑢𝑑) = ΦΣ Φ−1(𝑢1), . . . ,Φ−1(𝑢𝑑)

With Φ is denoted as the cumulative distribution function of the standard normal 
variable and Φ–1 signifies as its inverse.  
(b) t copula
According to Okhrin et al. (2017), the t copula with correlation matrix Ʃ is defined as

𝐶(𝑢1, . . . ,𝑢𝑑) = � 𝛷𝛴(𝑧1(𝑢1,𝑠), . . . ,
1

0
𝑧𝑑(𝑢𝑑 ,𝑠)) 𝑑𝑠

𝑧𝑖(𝑢𝑖 ,𝑠) = 𝑡𝜐𝑖−1(𝑢𝑖)/𝐺𝜐𝑖−1(𝑠), 
𝑡𝜐−1
𝜐
𝐺𝜐−1

𝜐 𝜒𝜐2⁄

where Φ as the cumulative distribution function of the standard normal variable and 
𝐶(𝑢1, . . . ,𝑢𝑑) = � 𝛷𝛴(𝑧1(𝑢1,𝑠), . . . ,

1

0
𝑧𝑑(𝑢𝑑 ,𝑠)) 𝑑𝑠

𝑧𝑖(𝑢𝑖 ,𝑠) = 𝑡𝜐𝑖−1(𝑢𝑖)/𝐺𝜐𝑖−1(𝑠), 
𝑡𝜐−1
𝜐
𝐺𝜐−1

𝜐 𝜒𝜐2⁄

, with
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1
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𝑧𝑑(𝑢𝑑 ,𝑠)) 𝑑𝑠

𝑧𝑖(𝑢𝑖 ,𝑠) = 𝑡𝜐𝑖−1(𝑢𝑖)/𝐺𝜐𝑖−1(𝑠), 
𝑡𝜐−1
𝜐
𝐺𝜐−1

𝜐 𝜒𝜐2⁄

denotes the inverse for cumulative distribution 
function of a Student’s t variable with degree of freedom 

𝐶(𝑢1, . . . ,𝑢𝑑) = � 𝛷𝛴(𝑧1(𝑢1,𝑠), . . . ,
1

0
𝑧𝑑(𝑢𝑑 ,𝑠)) 𝑑𝑠

𝑧𝑖(𝑢𝑖 ,𝑠) = 𝑡𝜐𝑖−1(𝑢𝑖)/𝐺𝜐𝑖−1(𝑠), 
𝑡𝜐−1
𝜐
𝐺𝜐−1
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1
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𝜐
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 denote the inverse 

for cumulative distribution function of 

𝐶(𝑢1, . . . ,𝑢𝑑) = � 𝛷𝛴(𝑧1(𝑢1,𝑠), . . . ,
1

0
𝑧𝑑(𝑢𝑑 ,𝑠)) 𝑑𝑠

𝑧𝑖(𝑢𝑖 ,𝑠) = 𝑡𝜐𝑖−1(𝑢𝑖)/𝐺𝜐𝑖−1(𝑠), 
𝑡𝜐−1
𝜐
𝐺𝜐−1

𝜐 𝜒𝜐2⁄ .

Archimedean Copula Family. Archimedean copula family is one of the most popular 
copula family that has been extensively employed. This is mainly because most of the 
copulas in Archimedean copula family admit an explicit formula, while the elliptical copula 
family does not comply. Archimedean copula family has been studied in numerous research 
fields, for example, rainfall frequency analysis (Zhang & Singh, 2007; Zhang & Singh, 
2012), intensity-duration-frequency relationship (Ariff et al., 2012), modelling wind speed 
dependence (Xie et al., 2012), modelling option pricing (Cherubini & Luciano, 2002) and 
probabilistic estimates of heat stress for rice (Zhang et al., 2018).

(a) Joe copula
According to Joe (1997) (Equation 1), 

𝐶(𝑢1, . . . , 𝑢𝑑) = 1− �(1 −𝑢𝑖)𝜃
𝑑

𝑖=1

−�(1− 𝑢𝑖)𝜃
𝑑

𝑖=1

1/𝜃

𝐶(𝑢1, . . . , 𝑢𝑑) = �𝑢𝑖−𝜃 − 𝑑 + 1
𝑑

𝑖=1

−1/𝜃

(𝑢1, . . . , 𝑢𝑑) = exp − �(−log 𝑢𝑖)𝜃
𝑑

𝑖=1

1
𝜃

 (1)

for θ ≥ 1.
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(b) Clayton copula
Clayton (1978), Cook and Johnson (1981) and Oakes (1982) had defined the copula 
as in Equation 2

𝐶(𝑢1, . . . , 𝑢𝑑) = 1− �(1 −𝑢𝑖)𝜃
𝑑

𝑖=1

−�(1− 𝑢𝑖)𝜃
𝑑

𝑖=1

1/𝜃

𝐶(𝑢1, . . . , 𝑢𝑑) = �𝑢𝑖−𝜃 − 𝑑 + 1
𝑑

𝑖=1

−1/𝜃

(𝑢1, . . . , 𝑢𝑑) = exp − �(−log 𝑢𝑖)𝜃
𝑑

𝑖=1

1
𝜃

   (2)

for θ ˃ 0. Independence will lead θ → 0. A complete dependence corresponds to θ 
→ ∞.
(c) Gumbel copula
Gumbel (1960) had derived the Gumbel copula as in Equation (3)

𝐶(𝑢1, . . . , 𝑢𝑑) = 1− �(1 −𝑢𝑖)𝜃
𝑑

𝑖=1

−�(1− 𝑢𝑖)𝜃
𝑑

𝑖=1

1/𝜃

𝐶(𝑢1, . . . , 𝑢𝑑) = �𝑢𝑖−𝜃 − 𝑑 + 1
𝑑

𝑖=1

−1/𝜃

(𝑢1, . . . , 𝑢𝑑) = exp − �(−log 𝑢𝑖)𝜃
𝑑

𝑖=1

1
𝜃

  (3)

for θ ≥ 1, θ = 1 if the structure is independent. Besides that, Gumbel copula is the 
only copula that was grouped as an Archimedean copula family as well as an extreme 
value copula family.

Estimating Copula Parameter

The parameter for the five selected copulas will be estimated using maximum likelihood 
estimator (Equation 4). Given a sample 𝑢𝑖 ,𝑖 ∈ 1, … , 𝑑

𝑐(𝑢𝑖)

,

𝑢𝑖 ,𝑖 ∈ 1, … , 𝑑

𝑐(𝑢𝑖)

   (4)

where 

𝑢𝑖 ,𝑖 ∈ 1, … , 𝑑

𝑐(𝑢𝑖) is the density function of C. 
By using the derived likelihood value, we will compare the performance of copulas 

using Akaike Information Criterion (AIC) values. The best fit copula would be the copula 
with minimal AIC value. 

Prediction Method using Best Fit Copula

The identification of best fit copula is useful for researchers and practitioners to predict 
the next year event as well as extreme quantiles. For each country, the d-dimensional time 
series for n years is denoted as 
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as (𝑥1, . . . ,𝑥𝑑) and the marginal distribution of 𝑥𝑖 is 𝐹𝑖 .

The following prediction algorithm was proposed by Simard and Remillard (2015) to

forecast the 𝑥𝑛+1:

1. Let 𝑢 = (𝑢1, . . . ,𝑢𝑑) be the copula data of 𝑑 −dimensional for the best fit copula. Then the

Rosenblatt's transformation of 𝑢, will be denoted as 𝑦 = (𝑦1, . . . , 𝑦𝑑). As mentioned in Schepsmeier

(2015), 𝑦1: = 𝑢1,𝑦2: = 𝐶(𝑢2|𝑢1), . . . ,𝑦𝑑: = 𝐶(𝑢𝑑|𝑢1, . . . , 𝑢𝑑−1).

2. Simulate 𝑘 realizations for conditional copula, which is 𝐶𝑢𝑛|𝑢𝑛−1(𝑦). Set the simulation result as 𝑈(𝑗) , 

𝑗 ∈ 1, … ,𝑘 .
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(𝑗) = 𝐹−1(𝑈(𝑗) ) and determine the predicted value using 𝑥�𝑛+1 = 1

𝑘
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(𝑗)𝑘
𝑗=1 . Hence, we will

use 𝑥�𝑖,𝑛+1 as the predictor for 𝑥𝑖,𝑛+1.

4. Determine the mean and standard error of the prediction value.
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RESULTS AND DISCUSSIONS

Exploratory Data Analysis

The annual time series for five countries in southeast Asia, namely Malaysia, Thailand, 
Indonesia, Vietnam and Myanmar, were used in this study. Five adopted variables were 
paddy production, planted area, fertilizer used, total annual average rainfall and maximum 
average temperature. The summary statistics for the five countries are shown in Table 1. 
Among the five countries, Malaysia has the smallest paddy planted area as well least outputs 
of paddy production, while Indonesia ranks the highest for both aforementioned indicators. 
For the climatological variables, Thailand has the lowest total annual rainfall and the highest 
maximum temperature. By observing the maximum paddy production of Thailand (in year 
2012) and Indonesia (in year 2013), we found that although the difference for paddy planted 
area was only 1880 (‘000 hectare), the paddy production harvested in Indonesia was almost 
twice that of Thailand. This might be due to the variation in climatology factors (amount 
of annual rainfall difference is almost twice) or other unperceived factors.

Figures 1 to 5 present the plot of five variables studied for Malaysia, Thailand, 
Indonesia, Vietnam, and Myanmar. These plots can be used to provide preliminary insights 
about the trend and relationship of the variables. In general, a clear linear pattern is visible 
in paddy production, planted area and fertilizer usage variable. For total annual rainfall 
and maximum temperature, only slight linear pattern can be observed. Multivariate Mann-
Kendall trend test were performed to analyse data collected over time for consistently 
increasing or decreasing trends. All five countries are having small p-value which are 
approximately zero. This indicates that the multivariate data are all having monotonic 
trends which also means that the data are showing a trend, that can be either positive, 
negative or non-null. 

Figures 6 to10 provide the boxplot for each country. We can observe the shape of 
distribution for each time series and have an initial understanding of the data. For paddy 
production variable, Malaysia and Indonesia are showing left-skewed distribution, while 
the rest are right-skewed. For paddy planted area, only Malaysia and Thailand are showing 
negative skewness. Based on the fertilizer usage data, only Indonesia’s data is left-skewed, 
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Table 1     
Summary statistics of variables used for five countries

Country Variables used Min. Q1 Median Mean Q3 Max

Malaysia

Paddy Production 1089 1696 1995 1913 2141 2604
Planted Area 516.5 659 676.2 669.6 693.4 766.2
Fertilizer Usage 93.71 228.5 723.7 825 1270 2241
Annual Rainfall 2498 2830 3008 3036 3250 3733
Maximum Temperature 25.36 25.76 26.13 26.11 26.42 27.32

Thailand

Paddy Production 10150 13920 19550 20720 25840 38000
Planted Area 6120 7743 9147 8971 9913 11960
Fertilizer Usage 1.72 12.16 35.13 59.41 108.1 167.7
Annual Rainfall 1268 1472 1565 1564 1651 1974
Maximum Temperature 27.84 28.55 29.09 29.1 29.63 30.49

Indonesia

Paddy Production 11600 22340 40080 38280 51100 71280
Planted Area 6731 8369 9988 10030 11570 13840
Fertilizer Usage 5.25 27.17 105.5 93.57 142.7 205.4
Annual Rainfall 2163 2647 2934 2861 3073 3581
Maximum Temperature 25.83 26.23 26.46 26.45 26.65 27.44

Vietnam

Paddy Production 8366 10600 16000 21000 32110 44040
Planted Area 4497 5030 5718 6116 7329 7903
Fertilizer Usage 8.29 45.93 94.08 153.6 292.3 403.9
Annual Rainfall 1525 1638 1834 1825 1978 2146
Maximum Temperature 26.79 27.17 27.41 27.43 27.7 28.17

Myanmar

Paddy Production 6636 8602 14150 15990 21320 32680
Planted Area 4254 4672 4884 5519 6302 8078
Fertilizer Usage 0.61 4.71 8.95 9.743 15.82 20.76
Annual Rainfall 1527 1868 1988 1992 2100 2483
Maximum Temperature 24.88 25.43 25.77 25.87 26.24 27.24

Figure 1. Scatterplots of five variables used for Malaysia
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Figure 2. Scatterplots of five variables used for Thailand

Figure 3. Scatterplots of five variables used for Indonesia

Figure 4. Scatterplots of five variables used for Vietnam
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Figure 5. Scatterplots of five variables used for Myanmar

Figure 6. Boxplot of variables used for Malaysia
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Figure 7. Boxplot of variables used for Thailand

Figure 8. Boxplot of variables used for Indonesia
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Figure 10. Boxplot of variables used for Myanmar

Figure 9. Boxplot of variables used for Vietnam
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Table 2  
Parameter estimates of best fit distributions for each univariate time series

   Parameters
  Best fit distribution Location Scale Shape Rate
Malaysia PP Weibull 2069.768 5.752

RA Laplace 676.2 36.33
FU Weibull 886.54 1.26
TR Inverse Gaussian 3036 0.0003049
MT Inverse Gaussian 26.11  0.0009491  

Thailand PP Inverse Gaussian 20722 0.00000654
RA Weibull 9613.993 6.672
FU Exponential 0.01683
TR Gamma 133.08559 0.08511
MT Inverse Gaussian 29.1 0.0001882

Indonesia PP Weibull  43290.981 2.416  
RA Gamma 26.927714 0.002684
FU Weibull 99.922 1.269
TR Weibull 2989.7 11.21
MT Normal 26.4466 0.3179   

Vietnam PP Inverse Gaussian  20997 0.0000163  
RA Inverse Gaussian 6116 0.0000053
FU Exponential 0.006509
TR Gamma 96.59 0.05292
MT Inverse Gaussian 27.43  0.0005807  

Myanmar PP Inverse Gaussian 15993  0.0000159  
RA Pareto 4253.7 4.148
FU Weibull 10.701 1.475
TR Normal 1991.7 191.4
MT Gumbel 25.611 0.4616   

the other four countries are right-skewed. The average of total annual rainfall time series in 
Malaysia and Myanmar are having positive skewness behaviour, while Thailand, Indonesia 
and Vietnam have longer tail at the left. For the fifth adopted variable, which is maximum 
average temperature, only Malaysia and Indonesia are indicating negative skewness.

After understanding the data variables, we proceeded with determining best fit marginal 
distribution for each variables. Variables used were paddy production (PP), paddy planted 
area (RA), fertilizer used (FU), total annual rainfall (TR) and maximum temperature (MT). 
The distributions tested were exponential, gamma, Weibull, Pareto, Gumbel, Laplace, 
normal, inverse Gaussian, log normal and logistic. Table 2 provides the best fit distributions 
and their respective parameter estimates. Rate parameter shown is also the inverse of scale 
parameter, it is one of the parameters for exponential and gamma distributions. Generally, 
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Weibull and inverse Gaussian were most suitable distribution for the variables studied. 
These two distributions have similar shape as both are positively skewed and having 
long tail. Besides, the gamma distribution which is a family of right-skewed probability 
distributions is the third most suitable distribution. This indicates that most of the data 
studied in this research are skewed to the right and exhibiting heavy tail.

Table 3 provides the further details of model fitting. The models listed in second column 
are used to represent the different variables used for model fitting. Variables studied for 
their respective models are as listed below: 

Model 1 : Paddy production and planted area
Model 2 : Paddy production and fertilizer usage
Model 3 : Paddy production and total annual rainfall
Model 4 : Paddy production and maximum temperature
Model 5 : Paddy production, planted area and fertilizer usage 
Model 6 : Paddy production, planted area and total annual rainfall
Model 7 : Paddy production, planted area and maximum temperature
Model 8 : Paddy production, fertilizer usage and total annual rainfall 
Model 9 : Paddy production, fertilizer usage and maximum temperature 
Model 10 : Paddy production, total annual rainfall and maximum temperature 
Model 11 : Paddy production, planted area, fertilizer usage and total annual rainfall
Model 12 : Paddy production, planted area, fertilizer usage and maximum temperature
Model 13 : Paddy production, planted area, total annual rainfall and maximum  

  temperature
Model 14 : Paddy production, fertilizer usage, total annual rainfall and maximum  

  temperature
Model 15 : Paddy production, planted area, fertilizer usage, total annual rainfall and  
              maximum temperature

The purpose of studying different combinations are to measure the relationship for 
these variables and to compare the performance of different variables combination for three 
types of model fitting approaches. Multiple correlation (Corr) for the models are shown in 
third column which signifying as model 3 and 4 whereby these models with only paddy 
production and climatological variables have low correlation. However, when we included 
more variables, the correlation magnitude had increased and became strongly correlated. In 
addition, model 15 exhibited the highest correlation values for all five countries although 
for clarity only the nearest thousandth are shown (as presented in bold font in Table 3). 

Apart from modelling using high dimensional copulas, we have included the AIC 
values for multiple regression model (MRM) and multivariate normal distribution (MVN). 
Multiple regression model is the simplest method to distinguish relationship between 
multiple independent variables and one dependent variable. From the results shown in 
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Table 3   
Results for all methods 

   AIC
 Model Corr MRM MVN Normal t Joe Clayton Gumbel
Malaysia 1 0.647 761.88 -15.81 -19.20 -17.19 2.00 -41.14 -6.11

2 0.800 736.46 8.97 -60.39 -58.28 -51.78 -48.23 -58.47
3 0.298 785.67 -32.16 -3.51 -1.33 -7.67 7.55 -5.64
4 0.569 769.82 -9.90 -18.61 -16.62 -7.21 -18.09 -13.87
5 0.952 667.60 33.96 -99.63 -94.43 -103.22 -101.86 -110.12
6 0.716 754.42 -29.24 -24.82 -17.87 -48.50 -48.38 -37.34
7 0.788 741.27 -6.16 -38.60 -32.18 -68.38 -70.24 -57.07
8 0.801 738.32 -7.13 -62.47 -55.78 -60.73 -61.28 -63.90
9 0.802 738.02 33.44 -92.75 -86.73 -84.10 -87.03 -92.47
10 0.645 764.12 -23.43 -23.44 -16.60 -21.48 -24.51 -23.06
11 0.952 669.38 21.00 -103.53 -92.57 -107.63 -107.40 -113.80
12 0.952 669.59 59.05 -130.51 -118.74 -133.54 -134.12 -142.12
13 0.847 727.73 -14.34 -48.29 -34.37 -74.40 -76.55 -53.71
14 0.802 740.01 22.96 -99.68 -86.60 -94.05 -96.43 -100.26
15 0.952 671.37 51.15 -138.74 -118.54 -138.66 -141.01 -147.78

Thailand 1 0.929 997.41 95.28 -131.77 -129.65 -87.93 -131.53 -112.39
2 0.955 973.36 79.88 -128.83 -126.62 -101.77 -105.38 -120.35
3 0.192 1100.60 -37.89 1.04 3.08 -0.03 2.94 0.47
4 0.123 1101.80 -43.60 0.85 2.86 1.01 1.47 0.90
5 0.982 928.62 205.93 -264.23 -257.47 -233.96 -235.21 -261.60
6 0.940 990.48 80.68 -130.31 -123.71 -130.95 -132.41 -138.05
7 0.929 999.41 72.96 -129.24 -123.00 -128.15 -128.98 -135.44
8 0.956 974.58 65.10 -131.17 -124.45 -104.40 -107.38 -124.28
9 0.955 975.31 56.74 -126.02 -119.31 -102.66 -103.91 -119.02
10 0.270 1100.59 -58.09 -1.79 4.67 -7.29 -6.68 -5.42
11 0.985 921.64 198.96 -269.56 -256.38 -234.77 -237.66 -267.01
12 0.982 930.24 183.62 -259.70 -246.61 -230.32 -231.97 -257.45
13 0.941 991.50 62.58 -132.21 -120.01 -137.57 -137.79 -143.86
14 0.956 976.57 44.90 -132.37 -119.29 -114.98 -117.81 -133.20
15 0.985 923.50 181.72 -270.70 -249.42 -244.04 -248.81 -275.33

Indonesia 1 0.992 970.25 172.35 -214.97 -212.72 -204.44 -73.69 -221.12
2 0.987 998.13 124.24 -160.81 -158.43 -125.14 -122.94 -148.88
3 0.065 1190.50 -39.54 -0.99 1.03 0.36 0.31 -0.14
4 0.127 1189.86 5.39 -31.45 -29.39 -15.72 -27.36 -24.31
5 0.997 917.49 349.71 -392.55 -384.97 -345.17 -344.85 -386.04
6 0.993 962.88 165.14 -222.04 -215.12 -211.12 -211.20 -229.30
7 0.992 972.15 201.58 -244.92 -238.88 -233.44 -233.55 -252.92
8 0.987 997.96 110.09 -162.79 -155.64 -126.44 -125.50 -151.67
9 0.987 997.20 154.01 -190.54 -183.18 -149.87 -153.81 -178.42
10 0.719 1154.19 -7.55 -31.57 -25.28 -23.61 -26.90 -29.46
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Table 3 (continue)
   AIC
 Model Corr MRM MVN Normal t Joe Clayton Gumbel

11 0.997 915.19 343.20 -397.69 -383.79 -351.97 -352.03 -392.22
12 0.997 919.21 379.73 -420.53 -410.27 -368.02 -370.89 -413.83
13 0.993 964.71 197.81 -252.06 -240.20 -238.62 -240.94 -261.05
14 0.988 996.00 143.23 -192.02 -178.88 -149.84 -154.50 -181.70

 15 0.997 917.19 376.37 -425.77 -408.19 -374.16 -378.19 -420.09
Vietnam 1 0.964 1007.36 89.40 -42.63 -79.83 -106.82 -7.41 -97.85

2 0.951 1022.93 79.61 -40.07 -79.97 -101.16 -5.90 -94.68
3 0.212 1145.00 -41.28 0.03 3.17 -2.12 1.25 -1.05
4 0.408 1137.81 -26.18 -3.87 -1.34 -5.23 1.47 -5.89
5 0.970 999.75 214.66 -162.97 -195.56 -229.15 -231.66 -232.91
6 0.965 1007.37 62.60 -40.60 -72.30 -107.46 -106.80 -97.14
7 0.965 1008.17 80.97 -51.83 -84.11 -110.82 -112.82 -105.12
8 0.953 1023.36 53.25 -38.07 -72.70 -101.28 -101.00 -93.73
9 0.951 1024.93 69.54 -47.86 -82.03 -104.26 -106.83 -99.80
10 0.524 1132.46 -45.72 -8.72 -0.64 -7.68 -10.38 -14.83
11 0.971 999.64 188.75 -159.13 -184.15 -230.50 -231.79 -231.96
12 0.971 1000.54 206.24 -170.18 -195.73 -231.15 -235.00 -238.17
13 0.965 1009.01 61.85 -55.63 -85.28 -120.44 -120.83 -113.94
14 0.953 1025.13 51.51 -51.95 -82.00 -109.69 -111.47 -107.45
15 0.971 1001.28 188.25 -172.29 -193.06 -238.76 -241.00 -244.99

Myanmar 1 0.946 987.50 36.35 -31.69 -38.20 -86.55 -1.83 -65.60
2 0.422 1096.38 -17.90 -24.01 -21.88 -4.50 -33.25 -14.55
3 0.009 1106.75 -33.49 1.77 2.94 2.00 1.55 1.91
4 0.250 1103.33 -39.95 -2.37 -0.26 -1.02 -2.39 -2.01
5 0.973 953.38 55.95 -54.23 -63.54 -118.84 -120.36 -92.26
6 0.958 976.68 33.09 -27.93 -35.18 -88.14 -88.63 -64.51
7 0.952 983.43 22.01 -33.25 -34.92 -89.26 -90.47 -67.78
8 0.448 1096.90 -23.46 -27.03 -22.20 -34.06 -36.19 -31.31
9 0.450 1096.75 -35.54 -24.93 -18.17 -32.39 -34.12 -29.03
10 0.265 1104.89 -45.75 -3.40 2.83 -0.83 -1.91 -2.13
11 0.976 949.92 54.34 -55.26 -60.74 -122.46 -124.29 -94.38
12 0.975 951.45 41.64 -54.22 -55.97 -119.55 -122.45 -92.50
13 0.960 976.31 22.28 -32.29 -30.64 -86.49 -87.98 -65.89
14 0.491 1096.15 -35.71 -30.20 -18.40 -34.18 -36.51 -33.49

 15 0.977 949.84 -42.36 -57.57 -53.09 -126.48 -127.63 -96.52

Table 3, multiple regression method is the least fitted model. As for multivariate normal 
distribution, it is an approach to generalize univariate normal distribution to higher 
dimensions and is derived from the multivariate central limit theorem. Since the sample 
sizes of variables used are sufficiently large, the central limit theorem assumption is 
fulfilled. Based upon the AIC values shown, we can conclude that the multivariate normal 
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distribution fits the data relatively better than multiple regression model. Most of the AIC 
values are negative, this indicates that there is less information loss as compared to MRM. 

Subsequently, we discuss the performance of the copulas fitted to different combination 
of variables. Generally, for all five countries, model 15 performed the best as the AIC values 
produced were generally lower than other models (as shown as bold font in Table 3). Apart 
from that, we also found that the Gumbel copula performed best for Malaysia, Thailand 
and Vietnam. Since Gumbel copula typically signifies as an extreme value copula, we can 
further presume that the variables for Malaysia, Thailand and Vietnam exhibit a heavy tail 
behaviour. But for Myanmar, both Clayton and Joe copulas for model 15 were performing 
identically well, with Clayton copula having a relatively lower AIC value. Besides that, 
the best fit copula for Indonesia was the normal copula, with AIC value equal to -425.77. 
Therefore, the best fit marginal distributions and copula for each countries would be utilised 
for further prediction. 

Finally, we predicted the next year event using best fit marginal distributions for each 
variables and best fit copula function for the countries. For each country, one thousand 
simulations were performed and the average together with estimation error of the 
predictions were computed. In order to identify the performance of prediction results, we 
also forecasted the next year event using univariate generalized autoregressive conditional 
heteroskedasticity (GARCH) time series model. The GARCH model is selected as the 
reference group for prediction using copula modelling as it is a most common forecasting 
method for time series and GARCH model is known as an effective model that aims to 
minimize errors in forecasting. For this study, the number of autocorrelation term used for 
the GARCH model was 1 (also known as AR(1)), and GARCH(1,1) was used to model 
the variance term. This AR(1)-GARCH(1,1) model was selected as it is one of the most 
prevalent GARCH model and the error approximation is relatively smaller as compared 
to other models that examined using our existing data. 

Table 4 shows the mean and standard error of predicted values for copula and GARCH 
model. Based on the values of standard error, copula model behaved reasonably well 
compared to GARCH model since fifteen out of the total of twenty-five predictions of 
copula showed lower figure. Other than that, the predicted means are provided in the same 
table for comparative purpose. It can be seen that copula model produces higher mean than 
the GARCH model in nineteen predictions. 

The result of prediction has indicated that the forecasting method based on copula 
models are also capable in detecting autocorrelation and volatility of multivariate time 
series. The findings in this research can be useful for practitioners and other related 
stakeholders in monitoring the variables that will affect paddy production and to predict 
the future trend.   
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Table 4   
Mean and standard error for predicted values

Copula GARCH
 Variables Mean SE Mean SE
Malaysia PP 2610.1 58.4 2626.3 80.3

RA 719.4 20.0 671.0 13.1
FU 1859.6 362.5 1732.8 395.1
TR 3414.9 180.3 3078.2 305.3

 MT 27.94 0.57 26.49 0.38
Thailand PP 31267.0 3312.0 31498.6 3665.8

RA 10967.0 522.5 11660.9 442.6
FU 133.5  20.2 125.0 54.8
TR 1716.4 65.1 1571.2 146.5
MT 30.77 0.85 29.07 0.74

Indonesia PP 59006.0  7345.9 58789.3 7243.0
RA 12601.8  1668.9 12351.3 809.6
FU 191.9  25.6 162.7 31.6
TR 3186.6  148.5 2831.6 298.0

 MT 26.72  0.221 26.65 0.26
Vietnam PP 35584.8 3651.0 37520.7 3892.9

RA 7444.8 334.4 7504.9 185.4
FU 385.3 109.1 374.8 81.5
TR 2066.4 55.9 1812.7 202.6
MT 27.76 0.17 27.42 0.34

Myanmar PP 26936.2 4417.2 27330.1 4277.2
RA 6997.2  267.5 6874.2 272.4
FU 19.2  3.205 17.1 2.4
TR 2221.8  100.5 1979.1 199.1

 MT 26.38  0.36 25.88 0.56

CONCLUSION

Rice is important for human consumption as well as for economic growth particularly for 
countries that produce rice in tropical region. Therefore, the objective of this study was 
to identify the best fit model and perform prediction using the model. We had compared 
the high dimensional copulas with multiple regression model and multivariate normal 
distribution by using several variables which were paddy production, paddy planted 
area, fertilizer usage, total annual rainfall and maximum temperature for five countries 
in southeast Asia. The five countries were Malaysia, Thailand, Indonesia, Vietnam, and 
Myanmar located in the tropical region in southeast Asia. Prior to multivariate analysis, 
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we had to determine the best fit univariate marginal distributions for all variables using 
maximum likelihood estimation method. The results indicate that Weibull and inverse 
Gaussian probability distributions fitted well to most of the variables.

Based on the results of model fitting, copulas produced the lowest AIC values while 
multivariate normal distribution produced a moderate AIC and multiple regression model 
has the highest AIC. For Malaysia, Thailand and Vietnam, Gumbel copula is the most 
suitable copula for the model that consists of all five variables. On the contrary, although 
the model contains of all five variables performs best for Myanmar and Indonesia too, the 
best fit copula for Myanmar is Clayton copula whilst for Indonesia is normal copula. In 
general, we can conclude that copulas are able to reduce the information loss in model 
fitting. Besides that, planted area, fertilizer usage, rainfall and temperature do play an 
important role in paddy production. 

The forecasted values of the following year event were computed based on best fit 
marginal distribution and copula functions. In order to compare the effectiveness of copula, 
we have also computed the mean and standard error of forecasted values using AR(1)-
GARCH(1,1) model. GARCH model is treated as reference group due to its ability to 
minimize errors in forecasting and to enhance the accuracy of further predictions. Based 
on the results, we found that the performance of the prediction is relatively similar with 
GARCH model. Hence, this proves that the effectiveness of multivariate copula model is 
comparable to univariate GARCH model.
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